
Memory-Efficient Decoding of LDPC Codes
Jason Kwok-San Lee

University of California, Berkeley
Email: jlee@eecs.berkeley.edu

Absfrucf- We present a low-complexity quantization scheme'
for the implementation of regular (3 ,6) LDPC codes. The
quantization parameters are optimized to maximize the mutual
information between the source and the quantized messages.
Using this non-uniform quantized belief propagation algorithm,
we have simulated that an optimized 3-bit quantizer operates
with 0.2dB implementation loss relative to a floating point
decoder, and an optimized 4-bit quantizer operates less than
0 . 1 ~ 3 quantization loss.

I. INTRODUCTION
Low-Density-Parity-Check (LDPC) codes[11 have recently

received a lot of attention because of their excellent error-
correcting capability. LDPC codes have been shown to be able
to perfonn close to the Shannon limit[2]. In the past decade
or so, much of the research on LDPC codes has focused
on the analysis and improvement of codes under decoding
algorithms with floating point precision. However, to make
LDPC codes practical in the real world, the design of an
efficient quantization scheme used in hardware implementation
is crucial.

Belief propagation algorithm is used to decode LDPC codes.
The standard belief propagation aIgorithm defines real-valued
messages passing along edges in a code graph. The standard
way to simulate this algorithm is to store and update the
messages in a very accurate representation such as floating-
point numbers. However, for very high-speed LDPC decoders,
it is clear that the high complexity associated with computing
and storing a very accurate representation is to be avoided
if possible. Therefore, we propose a low-compIexity LDPC
quantization scheme to make efficient hardware implementa-
tion possible.

In this paper, we present a general quantization scheme
whose parameters we have optimized to target regular (3,6)
codes. In addition to being a test-bed for comparing quantized
algorithms, this class of codes remains an appealing choice in
rate 3 applications that cannot tolerate the error floors typically
induced in codes highly optimized to perform close to capacity.

11. MOTIVATION
The advantages of using a low-complexity quantization

1) In the belief propagation algorithm, messages passing
along edges in a code graph may have to be stored.

i
schemes are many. They include:

'The work described was funded by the IND Technology Program and
performed at the Jet Propulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space Ahmistration.

Jeremy Thorpe
Jet Propulsion Laboratory

California Institute of Technology
Email: thorpe@caltech.edu

Logic complexity
proportional to
#Quantization bit

#Interconnect

#Quantization

#Quantization bit

Fig. 1. Complexity proportiona1 to quantization

The memory needed scales with the n-bit quantization
as O(n) .

2) The number of interconnect wires to connect variable
nodes and check nodes is proportional to the n-bit
quantization. The complexity of interconnect routing
scales at least linearly with n.

3) A smaller n-bit quantization makes it simpler for vari-
able nodes and check nodes to update the messages. The
logic complexity of variable nodes and check nodes units
are often more than linear with n-bit quantization. In the
worst case, an n-bit-input n-bit-output look-up tabIe has
Iogic complexity 0 (2 n) . Other schemes have complexity
which scales as O(n2).

Recently, several research groups have developed LDPC
decoders running on FPGA.[3]{4] New generations of FPGA
chips, such as Xilinx Virtex-I1 and Virtex-4, provide a suf-
ficient amount of on-board block memory for the memory-
demanding applications of digital signal processing. However,
these devices also impose a practical constraint since the block
memory is only divisible into 4-bit wide, or high-resolution
such as 9-bit, 18-bit, or 36-bit.[5][6] Therefore, in order to
utilize the on-board memory efficient, we should apply a n-bit
quantization scheme compatible to the block memory division,
9-bit quantization provides very fine resolution, but can limit
the size of code implementable in the device and can require
significant amounts of power to be consumed. By comparison,
an efficient 4-bit quantization can allow larger codes to be
decoded, and is especially amactive if it can achieve small

quantization loss.

111. QUANTIZED BELIEF PROPAGATION ALGORITHM

In [B] a general non-uniform quantized belief propagation
algorithm to decode regular LDPC codes is proposed. That
scheme was a generalization of a message passing rule de-
scribed in [9]. In it, the messages representing the likelihood
ratios are essentially compressed by each computation node
before being transmitted to the adjacent computation nodes.

The operation of each type of computation node (check
and variable) occurs in a domain in which updates can be
performed through simple additions and subtractions. For
the variable nodes, this is essentially the log-likelihood-ratio
(LLR) domain or ”reliability” domain. For check nodes, the
domain is called ”unreliability” domain. Note that values in
the two computational domains are typically represented by
many more bits than are required to transmit and store inter-
node messages.

The functions Qv and Qc which quantize the messages in
the reliability domain and unreliability domain respectively
into n-bit compressed messages. Complimentary to these are
the functions $u and & which restore the n-bit compressed
messages into the computational domains of each node. Note
that since variabIe nodes always send messages to check nodes
and vice-versa, a message which is compressed from the
reliability domain will always be restored into the unreliability
domain, and vice-versa.

Initially, information from the channel is interpreted and
quantized by a channel quantizer Qch which takes real-valued
log-likelihood-ratios and produces a quantized representation.
The function $ch takes a message produced by the channel
quantizer and outputs a value to be used by the variable node.

At each iteration the variable node produces the messages
vi+ At iteration 0, the messages are given by vi,j (0)

(0) = Qch (channel$) i E {l..n} (1)

At the tth iteration, the parity check phase occws first. All
T check node units read the variable-to-check messages vi+
from some edge memory connecting the ith variable node to
the j t h check node in the code graph, update the message by
equation 2, then write the resulting check-to-variable messages
uj-i back to the edge memory according to the code graph

. connections.

uj-+i(t) = Q c (E d c (u i ~ + j (t - l))) , j E {1..r} (2)

where i’ ranges over all edges connected connected to the
j t h check node excluding i, Qc is the quantization rule for the
check-to-variable message ug+, and qic is the reconstruction
function for the variable-to-check message v++. The archi-
tecture diagram of a check node unit is shown in Fig.2.

2’

Next, the variable phase occurs. n variable node units
read the check-to-variable messages uj,, from edge memory,

bt

tput 1
tit

tput 2

w
tput 6

.-
m
2 E Fig. 2. LJ

Check Node Unit’s architecture

n-bit

chann;rfibit n-bit input 1
output 1

output 3

Fig. 3. Variable Node’s architecture

update the message by equation 3, then write the variable-to-
check messages vi+ back to edge memory according to the
code graph connections.

, i E {Ln}

where j’ ranges over all edges connected connected to the
ith variable node excluding j, Qv is the quantization rule
for the variable-to-check message wi-j, is the reconstruc-
tion function for the check-to-variable message u+i, and
q5ch i s the reconstruction function for the channel message
Qch (channel;). The architecture diagram of a variable node
unit is shown in Fig.3.

At the final Kth iteration, hard decisions Xi are made in
variable nodes following:

(4)

Gaussian Channel

1 A

Fig. 4. Quantization of channel messages

TABLE I
OPTIMIZED 3 -BIT QUANTIZATION PARAMETERS: RECONSTRUCTION

VALUES

TABLE I1
OPTlMIZED 3-BIT QUANTIZATION PARAMETERS: QUANTIZER INTERVALS

Iv. OPTIMIZING THE QUANTIZATION PARAMETERS

We targeted regular (3,6) codes to optimize the quanti-
zation parameters. In order to optimize the error-correcting
performance in the quantization scheme, the intuition is to
maximize the mutual information between the source and the
quantized message. As the binary source signal is corrupted by
the gaussian noise channel, the signal before the quantization
process is a Gaussian-distributed real-valued message Y =
X + noise. Therefore, the mutual information between X
(binary source) and Y (Gaussian channel output) is:

a3

W Y l - d)&/ v; Y) = 1 + J Pr(yIz) log,(l+ P r (y l z)
-w scak. Initial values for the other four parameters can be found

similarly,
After initial values of the quantization parameters are de-

termined, these values are optimized using both simulation
and density evolution. Currently, significant amount of hand-
optimization is used, and we have not had time to explicate
our optimization procedures in detail.

Using this strategy, we found several sets of optimized non-
uniform quantization parameters, and listed as follows:

Table I: Optimized 3-bit Quantization rules: Reconstruction

Table 11: Optimized 3-bit Quantization rules: Quantizers'

a rgmaxI (X; Z) = argmax{l+ (7) Table 111: Optimized 4-bit Quantization rules: Reconstruc-

Table I V Optimized 4-bit Quantization rules: Quantizers'

Next, the n-bit quantizer maps the real-valued message Y
into the appropriated quantized message z according to the
quantization parameters, Z = Qch (Y) . (See Fig.4) Therefore,
the mutual information between the binary Source x and the
quantized message 2 is:

I (X ; Z) = 1 + Pr(.zlzl log, (1 -t-
z

functions &(z), &(z),and &(.). In order to maximize the mutual information, the quantiza-
tion functio QT i s found such that:

interval values Qch(ch), Qo(v),and Qc(c).

tion fhnctions #ch(z), Q,(z),and 4C(x).

6'
Pr(zl - z) - Pr(.4x) log,(l+

z Pr(z'z) interval values Qch(ck): Qv(v),and Qc(c).
where

Q;;(Z) V. SIMULATION PERFORMANCE

(8) Using the optimized 3-bit and 4-bit quantization parameters
targeted for regular (3,6) codes, we simulated our proposed
non-uniform quantization scheme on a (4096, 2048) regular
code. Using the 3-bit optimized quantizer, the LDPC decoder
operates with 0 . 2 d B implementation loss relative to a floating

Pr(z1x) = J PdYWdY
min Q;; (z)

Once Qch is determined, initial values for dch can be found
by taking the midpoints of Qch quantized to an appropriate

TABLE Ill
OPTIMIZED 4-BIT QUANTIZATION PARAMETERS: RECONSTRUCTION

VALUES

0
1
2

3

0 5 ch 50.5 05 w 510 c >210
0.5< ch 51.0 IO< v 520 115< c 5210
l.O< ch 51.5 20< v 530 67< c 5115
1.5< ch C2.l 30< v <42 36< c <67

Simulations on (4096,2040)
regular 13,6) code

%bit non-uniiorm
quantira6on.

than floating-point BP :
,ol. floating-point EP

2
IO* -

4-bit nowuniform 1
1-s than 0 1 dB 10s
thanfloating-point BP

i
'i

quanlabo";

,Oa

1

Fig. 5 . Simulation performance of various quantization scheme

point belief propagation decoder. Using the 4-bit optimized
quantizer, the LDPC decoder achieves quantization loss less
than O.ldB.(See Fig. 5) For the sake of quantization simplicity,
we adopted the optimized 3-bit quantizer into our FPGA-based
structured LDPC decoder.[3]

VI. COMPARING NON-UNIFORM QUANTIZATION AND
UNIFORM QUANTIZATION

[7] examined various uniform quantization schemes in-
cluding uniform quantized offset BP-based decoding algo-
rithms in detaiIs. While computationally more involved, our
proposed non-uniform quantization schemes outperforms the
unifom quantized counterpart when constrained by stored
bit width. For example, decoding a regular (8000, 4000)
LDPC code, [7]'s 5-bit uniform quantized offset BP-based
algorithms suffers a degradation of O.ldB compared with the
unquantized BP algorithms. In Comparison, simulating on a
similar block-length (8 192, 4096) regular LDPC code, our
proposed 4-bit non-uniform quantization scheme operates less
than 0 . l d B implementation loss relative to a unquantized BP
decoder.(See Fig. 6) Benefiting from a smaller quantization
bit number while enjoying less implementation loss, non-
uniform quantization may be preferable to be adopted in
hardware implementation of LDPC decoder, especially on
a FPGA-platform in which 4-bit quantization optimizes the
block memory utilization.

TABLE IV
OPTIMIZED +BIT QUANTIZATION PARAMETERS: QUANTIZER INTERVALS

18< c 536
7< c 518
2< c 57

ch >5.0 0 5 c 52

VII. CONCLUSION
We have presented a general non-uniform low-complexity

quantization scheme for the implementation of LDPC de-
coders, and demonstrated the 3-bit and 4-bit optimized quan-
tization rules for regular (3 , 6) LDPC decoders. Maximizing
the mutual information between the binary source and received
quantized message allows the optimization of quantized LDPC
decoding. As demonstrated by this work, an efficient low-
complexity quantization can reduce the memory requirements
and routing complexity in the hardware implementation of
practical LDPC decoders.

Fig. 6. 5-bit uniform quantizer Vs. 4-bit non-uniform quantizer

REFERENCES
[l] R. G. Gallager, Low-Density Parity-Check Codes, MIT Press, Cam-

bridge,MA, 1963.
[2] S. Chug, G. D. Forney, T. J. Richardson, and R. Urbanke, "On the design

of low-density parity-check codes within 0.0045 dB of the Shannon limit,"
IEEE C o w . Letters, voI.5, pp.58-60, Feb. 2001.

[3] J. Lee, E. Lee, J. Thorpe, K. Andrews, S. Dolinar, J. Hamkins, "A
Scalable Architecture of a Smuctured LDPC Decoder," Proc. IEEE ISIT
2004, Chicago, Jun 27- Jul 2 2004, pp.292.

[4] T. Zhong and K. Parhi, "A 54 Mbps (3, 6)-Regular FPGA LDPC
Decoder," Proc. IEEE SIPS 2002, San Diego, CA, Oct. 1618, 2002,
pp. 127-32..

[5] 18 Kbit Block SelecrRAM Resources, X i h x Virtex-
I1 Platform FPGAs Complete Data Sheet, pp. 21,
http://direct.xilinx,co~vdocs/publicatiom/ds03 1 .pdf

[6] Block RAM Summary, Xilinx Virtex-4 User Guide, pp. 109,
http://direct.xilinx.com/bvdocs/userguides/ugO7O.pdf

[7] J. Chen, A. Dholakia, E. Elefthenoun M. Fossorier, and X.-Y Hu,
'Teduced-Complexity Decoding of LDPC Codes."

[8] J. Thorpe, "Low-complexity approximations to be-
lief propagation for LDPC codes," available at
http://~.systems.caltech.edu/jeremy/researchlpapers/research.html.

[9] T. J. Richardson and R. L. Urbanke, "The Capacity of Low-Density Parity
Check Codes Under Message-Passing Decoding," IEEE Trans. on Info.
Th., vol. 47, no. 2, pp, 599-618, 2001.

